JAVA程序实例:多线程并发编程之互斥锁 Reentrant Lock
小职 2018-03-01 来源 :网络 阅读 1066 评论 0

摘要:讲解JAVA程序实例之Java多线程并发编程之互斥锁 Reentrant Lock!通过关键字 synchronized 获取的锁,我们称为同步锁。

Java 中的锁通常分为两种:

讲解JAVA程序实例之Java多线程并发编程之互斥锁 Reentrant Lock!

· 通过关键字 synchronized 获取的锁,我们称为同步锁。

· java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁)。

本篇主要介绍 ReentrantLock(互斥锁)。

ReentrantLock(互斥锁)

ReentrantLock 互斥锁,在同一时间只能被一个线程所占有,在被持有后并未释放之前,其他线程若想获得该锁只能等待或放弃。

ReentrantLock 互斥锁是可重入锁,即某一线程可多次获得该锁。

公平锁 and 非公平锁

    public ReentrantLock() {
        sync = new NonfairSync();
    }
 
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

由 ReentrantLock 的构造函数可见,在实例化 ReentrantLock 的时候我们可以选择实例化一个公平锁或非公平锁,而默认会构造一个非公平锁。

公平锁与非公平锁区别在于竞争锁时的有序与否。公平锁可确保有序性(FIFO 队列),非公平锁不能确保有序性(即使也有 FIFO 队列)。

然而,公平是要付出代价的,公平锁比非公平锁要耗性能,所以在非必须确保公平的条件下,一般使用非公平锁可提高吞吐率。所以 ReentrantLock 默认的构造函数也是“不公平”的。

一般使用

DEMO1:
public class Test {
 
    private static class Counter {
 
        private ReentrantLock mReentrantLock = new ReentrantLock();
 
        public void count() {
            mReentrantLock.lock();
            try {
                for (int i = 0; i < 6; i++) {
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                }
            } finally {
            // 必须在 finally 释放锁
                mReentrantLock.unlock();
            }
        }
    }
 
    private static class MyThread extends Thread {
 
        private Counter mCounter;
 
        public MyThread(Counter counter) {
            mCounter = counter;
        }
 
        @Override
        public void run() {
            super.run();
            mCounter.count();
        }
    }
 
    public static void main(String[] var0) {
        Counter counter = new Counter();
        // 注:myThread1 和 myThread2 是调用同一个对象 counter
        MyThread myThread1 = new MyThread(counter);
        MyThread myThread2 = new MyThread(counter);
        myThread1.start();
        myThread2.start();
    }
}

DEMO1 输出:

Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

Thread-1, i = 0

Thread-1, i = 1

Thread-1, i = 2

Thread-1, i = 3

Thread-1, i = 4

Thread-1, i = 5

DEMO1 仅使用了 ReentrantLock 的 lock 和 unlock 来提现一般锁的特性,确保线程的有序执行。此种场景 synchronized 也适用。

锁的作用域

DEMO2:
public class Test {
 
    private static class Counter {
 
        private ReentrantLock mReentrantLock = new ReentrantLock();
 
        public void count() {
            for (int i = 0; i < 6; i++) {
                mReentrantLock.lock();
                // 模拟耗时,突出线程是否阻塞
                try{
                    Thread.sleep(100);
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                // 必须在 finally 释放锁
                    mReentrantLock.unlock();
                }
            }
        }
 
        public void doOtherThing(){
            for (int i = 0; i < 6; i++) {
                // 模拟耗时,突出线程是否阻塞
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
            }
        }
    }
 
    public static void main(String[] var0) {
        final Counter counter = new Counter();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.count();
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.doOtherThing();
            }
        }).start();
    }
}

DEMO2 输出:

Thread-0, i = 0

Thread-1 doOtherThing, i = 0

Thread-0, i = 1

Thread-1 doOtherThing, i = 1

Thread-0, i = 2

Thread-1 doOtherThing, i = 2

Thread-0, i = 3

Thread-1 doOtherThing, i = 3

Thread-0, i = 4

Thread-1 doOtherThing, i = 4

Thread-0, i = 5

Thread-1 doOtherThing, i = 5

DEMO3:
public class Test {
 
    private static class Counter {
 
        private ReentrantLock mReentrantLock = new ReentrantLock();
 
        public void count() {
            for (int i = 0; i < 6; i++) {
                mReentrantLock.lock();
                // 模拟耗时,突出线程是否阻塞
                try{
                    Thread.sleep(100);
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 必须在 finally 释放锁
                    mReentrantLock.unlock();
                }
            }
        }
 
        public void doOtherThing(){
            mReentrantLock.lock();
            try{
                for (int i = 0; i < 6; i++) {
                    // 模拟耗时,突出线程是否阻塞
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
                }
            }finally {
                mReentrantLock.unlock();
            }
 
        }
    }
 
    public static void main(String[] var0) {
        final Counter counter = new Counter();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.count();
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.doOtherThing();
            }
        }).start();
    }
}

DEMO3 输出:

Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

Thread-1 doOtherThing, i = 0

Thread-1 doOtherThing, i = 1

Thread-1 doOtherThing, i = 2

Thread-1 doOtherThing, i = 3

Thread-1 doOtherThing, i = 4

Thread-1 doOtherThing, i = 5

结合 DEMO2 和 DEMO3 输出可见,锁的作用域在于 mReentrantLock,因为所来自于 mReentrantLock。

可终止等待

DEMO4:

public class Test {
 
    static final int TIMEOUT = 300;
 
    private static class Counter {
 
        private ReentrantLock mReentrantLock = new ReentrantLock();
 
        public void count() {
            try{
                //lock() 不可中断
                mReentrantLock.lock();
                // 模拟耗时,突出线程是否阻塞
                for (int i = 0; i < 6; i++) {
                    long startTime = System.currentTimeMillis();
                    while (true) {
                        if (System.currentTimeMillis() - startTime > 100)
                            break;
                    }
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                }
            } finally {
                // 必须在 finally 释放锁
                mReentrantLock.unlock();
            }
        }
 
        public void doOtherThing(){
            try{
                //lockInterruptibly() 可中断,若线程没有中断,则获取锁
                mReentrantLock.lockInterruptibly();
                for (int i = 0; i < 6; i++) {
                    // 模拟耗时,突出线程是否阻塞
                    long startTime = System.currentTimeMillis();
                    while (true) {
                        if (System.currentTimeMillis() - startTime > 100)
                            break;
                    }
                    System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
                }
            } catch (InterruptedException e) {
                System.out.println(Thread.currentThread().getName() + " 中断 ");
            }finally {
                // 若当前线程持有锁,则释放
                if(mReentrantLock.isHeldByCurrentThread()){
                    mReentrantLock.unlock();
                }
            }
        }
    }
 
    public static void main(String[] var0) {
        final Counter counter = new Counter();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.count();
            }
        }).start();
        Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                counter.doOtherThing();
            }
        });
        thread2.start();
        long start = System.currentTimeMillis();
        while (true){
            if (System.currentTimeMillis() - start > TIMEOUT) {
                // 若线程还在运行,尝试中断
                if(thread2.isAlive()){
                    System.out.println(" 不等了,尝试中断 ");
                    thread2.interrupt();
                }
                break;
            }
        }
    }
}

DEMO4 输出:

Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

不等了,尝试中断

Thread-1 中断

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

线程 thread2 等待 300ms 后 timeout,中断等待成功。

若把 TIMEOUT 改成 3000ms,输出结果:(正常运行)

Thread-0, i = 0

Thread-0, i = 1

Thread-0, i = 2

Thread-0, i = 3

Thread-0, i = 4

Thread-0, i = 5

Thread-1 doOtherThing, i = 0

Thread-1 doOtherThing, i = 1

Thread-1 doOtherThing, i = 2

Thread-1 doOtherThing, i = 3

Thread-1 doOtherThing, i = 4

Thread-1 doOtherThing, i = 5

定时锁

DEMO5:

public class Test {
 
    static final int TIMEOUT = 3000;
 
    private static class Counter {
 
        private ReentrantLock mReentrantLock = new ReentrantLock();
 
        public void count() {
            try{
                //lock() 不可中断
                mReentrantLock.lock();
                // 模拟耗时,突出线程是否阻塞
                for (int i = 0; i < 6; i++) {
                    long startTime = System.currentTimeMillis();
                    while (true) {
                        if (System.currentTimeMillis() - startTime > 100)
                            break;
                    }
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                }
            } finally {
                // 必须在 finally 释放锁
                mReentrantLock.unlock();
            }
        }
 
        public void doOtherThing(){
            try{
                //tryLock(long timeout, TimeUnit unit) 尝试获得锁
                boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);
                System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);
                if(isLock){
                    for (int i = 0; i < 6; i++) {
                        // 模拟耗时,突出线程是否阻塞
                        long startTime = System.currentTimeMillis();
                        while (true) {
                            if (System.currentTimeMillis() - startTime > 100)
                                break;
                        }
                        System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
                    }
                }else{
                    System.out.println(Thread.currentThread().getName() + " timeout");
                }
            } catch (InterruptedException e) {
                System.out.println(Thread.currentThread().getName() + " 中断 ");
            }finally {
                // 若当前线程持有锁,则释放
                if(mReentrantLock.isHeldByCurrentThread()){
                    mReentrantLock.unlock();
                }
            }
        }
    }
 
    public static void main(String[] var0) {
        final Counter counter = new Counter();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.count();
            }
        }).start();
        Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                counter.doOtherThing();
            }
        });
        thread2.start();
    }
}

DEMO5 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-1 isLock:falseThread-1 timeoutThread-0, i = 3Thread-0, i = 4Thread-0, i = 5

tryLock() 尝试获得锁,tryLock(long timeout, TimeUnit unit) 在给定的 timeout 时间内尝试获得锁,若超时,则不带锁往下走,所以必须加以判断。

ReentrantLock or synchronized

ReentrantLock 、synchronized 之间如何选择?

ReentrantLock 在性能上 比 synchronized 更胜一筹。

ReentrantLock 需格外小心,因为需要显式释放锁,lock() 后记得 unlock(),而且必须在 finally 里面,否则容易造成死锁。

synchronized 隐式自动释放锁,使用方便。

ReentrantLock 扩展性好,可中断锁,定时锁,自由控制。

synchronized 一但进入阻塞等待,则无法中断等待。

 

本文由职坐标整理并发布,希望对同学们学习Java的知识有所帮助。了解更多详情请关注职坐标Java频道!

本文由 @小职 发布于职坐标。未经许可,禁止转载。
喜欢 | 38 不喜欢 | 2
看完这篇文章有何感觉?已经有40人表态,95%的人喜欢 快给朋友分享吧~
评论(0)
后参与评论

您输入的评论内容中包含违禁敏感词

我知道了

助您圆梦职场 匹配合适岗位
验证码手机号,获得海同独家IT培训资料
选择就业方向:
人工智能物联网
大数据开发/分析
人工智能Python
Java全栈开发
WEB前端+H5

请输入正确的手机号码

请输入正确的验证码

获取验证码

您今天的短信下发次数太多了,明天再试试吧!

提交

我们会在第一时间安排职业规划师联系您!

您也可以联系我们的职业规划师咨询:

小职老师的微信号:z_zhizuobiao
小职老师的微信号:z_zhizuobiao

版权所有 职坐标-一站式IT培训就业服务领导者 沪ICP备13042190号-4
上海海同信息科技有限公司 Copyright ©2015 www.zhizuobiao.com,All Rights Reserved.
 沪公网安备 31011502005948号    

©2015 www.zhizuobiao.com All Rights Reserved

208小时内训课程