JAVA语言之Ceisum官方教程2 -- 项目实例(workshop)
小标 2019-06-19 来源 : 阅读 917 评论 0

摘要:本文主要向大家介绍了JAVA语言之Ceisum官方教程2 -- 项目实例(workshop),通过具体的内容向大家展示,希望对大家学习JAVA语言有所帮助。

本文主要向大家介绍了JAVA语言之Ceisum官方教程2 -- 项目实例(workshop),通过具体的内容向大家展示,希望对大家学习JAVA语言有所帮助。

JAVA语言之Ceisum官方教程2 -- 项目实例(workshop)

概述
我们很高兴欢迎你加入Cesium社区!为了让你能基于Cesium开发自己的3d 地图项目,这个教程将从头到尾讲解一个基础的Cesium程序的开发过程。这个教程将用到很多重要的CesiumAPI,但是并不是所有的(CesiumJS有很多很多功能)。我们目标是教会你基于Cesium做开发的基本原则和工具,在你的项目里能举一反三,解决其他问题。
我们创建一个简单的程序去可视化纽约市的一些地理位置。我们将加载各种类型各种样式的二维和三维数据,并且创建若干个相机位置,并且展示一些用户交互的UI。最后,做为一个高科技地图,我们加载了一个无人机三维模型,充分利用3d可视化的优势去观察一些地理位置。
在完成教程后,你对Cesium的功能会有几个基本概念,包括配置viewer、加载数据、创建各种样式的几何体、使用3d tiles(三维模型切片)、控制相机、增加鼠标交互事件。


带交互的可视化纽约城地理位置
步骤
再开发前的几个必备步骤:


访问这个页面确认你的电脑环境适合Cesium Cesium Viewer. 如果没有看到地球? 点这个链接 Troubleshooting.
安装Node.js.
下载教程代码 workshop code。使用git clone 或者手动下载zip并解压缩。
在cmd命令行下,使用cd命令定位到 cesium-workshop目录下.
运行 npm install。
运行 npm start。


控制台应该输出下面信息:

workshop运行

注意不能关闭控制台窗口,开发中需要保证这个进程运行着。
下一步, 在浏览器里打开 localhost:8080。你应该能看到我们的程序已经运行了。
注意
这个教程里提到的workshop是基于cesium1.45开发的,里面的地形服务器已经失效了,导致cesium加载并不成功,使用这个代码看不到效果。

workshop已经运行不起来了
解决方法也很简单,我们使用Cesium最新版1.51里的文件替换到如下目录

替换cesium库
再次刷新页面,就可以了,效果如下:

替换cesiumjs库后的加载效果
程序目录
在程序根目录下,有如下文件和文件夹. 这个程序已经被设计为尽可能的简单,只包含cesiumjs的库。


Source/ : 我们项目的代码。


ThirdParty/ : 外部js库,目前只包含cesium。


LICENSE.md : 我们项目的说明条款。


index.html : 主页,包含项目程序代码和页面结构。


server.js : 简单的基于nodejs的http服务器。


CesiumJS是完全兼容现代javascript 库和框架,所以放心大但的使用。
下面是一些示例:


Cesium and webpack 教程展示了使用webpack集成cesium去更高效的开发web项目。
React集成
CesiumJS和Threejs集成 


页面结构
下来我们看看index.html。为cesium的控件创建div,以及一些输入元素。我们注意到,Cesium的控件就是一个普通的div,它可以被css样式设置,并且和其他div交互。
有一些关键的行:
引入CesiumJS
受限在html的标签内引用cesium.js。这个定义了Cesium对象,并且包含整个CesiumJS的库。

为了减小开发的项目最终的js文件大小,当然你也可以包含ThirdParty/Cesium/Source/目录下的独立的Cesium源码模块。不过我们为了简单的测试API,我们直接包含了整个CesiumJS库。
HTML结构
在HTML的body部分,有一个div为了创建Cesium控件。

为了在div创建成功后再执行其他代码,可以再HTML的body部分增加script标签去引用js文件。
页面样式
使用index.css文件定义了HTML元素的样式,可以在HTML的head元素里引用它。

Cesium的所有小控件下面这个CSS来定义样式。需要在index.css之前引用。

我们的页面已经有了基本样式,并且我们在index.css设定的样式可以覆盖Cesium默认的控件样式。
工作流程
步骤如下:


使用你最擅长的文本编辑器(推荐sublime)打开 Source/App.js,并且清空里面内容。
把文件Source/AppSkeleton.js的内容拷贝到 Source/App.js。
确认你的http服务还在 cesium-workshop 目录运行着。
使用你的浏览器打开 localhost:8080.推荐使用chrome,但是现在浏览器都可以. 你应该能看到一个黑色背景。
在代码里去掉注释,保存 Source/App.js,刷新浏览器,应该有些效果改变了。


还有问题? 那你先跟着sandcastle去做一个没有UI的简单程序:


完整的代码
注释的代码


下来我们真正开始。
创建Viewer
Cesium的最基础对象就是 Viewer, 一个具有很多功能的3d地球的黑盒子. 使用下面的代码创建viewer并附着到id为 "cesiumContainer"`的div上。

这简单的一行代码实际包含了很多内容,成功后你应该能看见基础的地球,像下面一样:



基础地球默认情况下这个场景能处理鼠标和触摸事件。 试下下面的相机控制方法:
左键单击和拖拽 - 沿着地球表面平移(调整相机位置).
右键单击和拖拽 - 相机放大缩小(调整相机距离).
滚轮 - 相机放大缩小(调整相机距离).
中间按下和拖拽 - 围绕地球表面旋转相机(调整相机方向)。
除了地球, Viewer还默认包含了一些有用的控件:

Cesium控件
Geocoder : 地理位置查询定位控件,默认使用bing地图服务.


HomeButton : 默认相机位置。


SceneModePicker : 3D、2D和哥伦布模式的切换按钮.


BaseLayerPicker : 选择地形、影像等图层。


NavigationHelpButton : 显示默认的相机控制提示.


Animation : 控制场景动画的播放速度.


CreditsDisplay : 展示数据版权属性。


Timeline : 时间滚动条。


FullscreenButton : 全屏切换。


可以传递一个options对象做为配置参数,去控制上面这些控件的显示或者不显示。对于示例代码,删除第一行,打开后面几行的注释,代码如下:

这几行代码创建了一个不包含选择指示器(selection indicators),基础底图选择控件的viewer。完整的options配置看文档Viewer 。
影像图层
影像是Cesium程序一个关键元素。它是覆盖在地表的各种不同精度的图像集合。根据相机的朝向和距离,Cesium将请求和渲染不同LOD或者缩放级别下的图像。
Cesium支持多个影像图层同时加载、删除、排序和调整。
Cesium为影像图层提供了大量方法,类似调整颜色、混合等。下面是Sandcastle中的一些示例代码:


影像图层基本效果
影像图层调整颜色
调整影像图层顺序
影像的屏幕分割(卷帘效果)


Cesium提供了多种影像数据来源 多用影像数据源 。
支持的格式:


WMS
TMS
WMTS (with time dynamic imagery)
ArcGIS
Bing Maps
Google Earth
Mapbox
Open Street Map


Cesium默认使用Bing map的影像图层。这个影像图层经常用来做demo演示。为了使用这个影像,需要创建一个Cesium ion账户,并且生成一个访问token。
(译者注:考虑到国内的环境,修改了官方的示例,直接加载谷歌地图的影像)

运行后有如下效果:

添加谷歌底图效果
后续教程还有一篇专门讲影像图层的 影像图层教程.
地形图层
Cesium支持渐进流式加载和渲染全球高精度地形,并且包含海、湖、河等水面效果。相对2D地图,山峰、山谷等其他地形特征的更适宜在这种3D地球中展示。和影像图层一样,Cesium需要在服务端预先把地形数据处理为切片形式,在客户端基于当前相机位置去请求和渲染地形切片。
下面是一些示例和地形数据集以及配置选项:


ArcticDEM : 高精度北极地形。


PAMAP Terrain : 高精度宾夕法尼亚州地形


地形配置 : 地形配置和格式


地形夸张 : 使地形起伏差异更大


支持的格式:


Quantized-mesh, Cesium团队定义的不规则地形三角网格式。
Heightmap
Google Earth Enterprise
为了增加一个地形数据,我们需要创建一个 CesiumTerrainProvider, 设置一个url以及很少的几个配置项,然后把这个provider设置到 viewer.terrainProvider.


这里,我们使用 Cesium全球地形,这个数据存储在Cesium ion服务器上,已经默认到你的账户里的“My Assets”中。这种前提下,我们使用createWorldTerrain辅助函数去创建 Cesium全球地形 .

requestWaterMask 和 requestVertexNormals 两个选项都是可选的,他们告知Cesium去请求额外的水面数据和光照数据。 默认都为false.


最终,我们有了地形效果,我们可能需要再写一行代码,确保地形以下的物体不可见。

纽约的地表非常平,可以漫游到其他地方去浏览. 为了明显看到效果,可以到珠峰附近去查看。

珠峰地形
后续有一个地形的详细教程 地形教程.


场景配置
为了我们的viewer的展示时间和空间正确,需要一些更多的配置。这部分主要和 viewer.scene打交道, 这个类控制了我们的viewer中所有的图形元素。
使用下面这句话,开启全球光照,光照方向依据太阳方向。

随着时间的变化,光照方向也在变换。如果缩小后,我们能看到一部分的地球是黑色的,因为这部分此时晚上。
在初始化视图之前,先学下基本的cesium 类型:


Cartesian3 : 三维笛卡尔(直角)坐标 – 当用来表示位置的时候,这个坐标指在地固坐标系(Earth fixed-frame (ECEF))下,相对地球中心的坐标位置,单位是米。


Cartographic :使用经纬度(弧度)和高度(WGS84地球高程)描述的三维坐标 。


HeadingPitchRoll :
在ENU(East-North-Up)坐标系中,相对坐标轴的旋转(弧度)。Heading 相对负z轴(垂直向下). Pitch 相对负y轴. Roll相对正x轴.


Quaternion :使用四维坐标描述的三维旋转。
这是在Cesium的scene中摆放对象的基本类型,Cesium提供了一系列的方便的转换函数。具体请查看cesium文档。


现在,我们把相机定位到我们数据所在的位置--纽约。
相机控制
Camera 是 viewer.scene的一个属性,用来控制当前可见范围。使用Cesium Camera API 我们可以直接设置相机的位置和朝向。
一些最常用的方法:


Camera.setView(options) : 立即设置相机位置和朝向。


Camera.zoomIn(amount) : 沿着相机方向移动相机。


Camera.zoomOut(amount) : 沿着相机方向远离


Camera.flyTo(options) : 创建从一个位置到另一个位置的相机飞行动画。


Camera.lookAt(target, offset) : 依据目标偏移来设置相机位置和朝向。


Camera.move(direction, amount) : 沿着direction方向移动相机。


Camera.rotate(axis, angle) : 绕着任意轴旋转相机。


更详细的可以去学习下面两个示例:


Camera API示例


自定义相机控制
我们测试一个方法,把相机位置放置到纽约。分别使用一个 Cartesian3表示位置,一个HeadingPitchRoll表示朝向。
个HeadingPitchRoll表示朝向。


// 创建相机初始位置和朝向
var initialPosition = new Cesium.Cartesian3.fromDegrees(-73.998114468289017509, 40.674512895646692812, 2631.082799425431);
var initialOrientation = new Cesium.HeadingPitchRoll.fromDegrees(7.1077496389876024807, -31.987223091598949054, 0.025883251314954971306);
var homeCameraView = {
destination : initialPosition,
orientation : {
heading : initialOrientation.heading,
pitch : initialOrientation.pitch,
roll : initialOrientation.roll
}
};
// 设置视图
viewer.scene.camera.setView(homeCameraView);
使用一个js对象保存相机的参数,设置后,相机此时是垂直俯视曼哈顿(Manhattan)。
事实上,我们可以使用这个view参数来更改home按钮的效果。与其设置地球的默认视图参数,我们还不如重写这个按钮,点击之后飞行到曼哈顿。可以通过其他参数来调节动画过程,并且可以设置一个事件监听取消默认的飞行过程,然后调用新的flyto()函数飞到我们设置的位置:

参看这篇教程学习更多相机操作方法 camera教程.
时间控制
下来,我们通过配置viewer的 时钟(Clock) 和时间线(Timeline) 去控制场景中的时间流逝。
时钟(clock)API教程.
Cesium使用 JulianDate 描述某个时刻,这个时间存储了自从公元前4712年1月1日中午的天数。为了提高精度,这个类里分开存储了时刻的日期部分和时刻的秒部分。为了数学运算的安全和闰秒(leap seconds)的问题,这个时刻是按照国际原子时标准(International Atomic Time standard)存储的。
下面是一些关于scene中时间的配置选项:
// 设置时钟和时间线
viewer.clock.shouldAnimate = true; // 当viewer开启后,启动动画
viewer.clock.startTime = Cesium.JulianDate.fromIso8601("2017-07-11T16:00:00Z");
viewer.clock.stopTime = Cesium.JulianDate.fromIso8601("2017-07-11T16:20:00Z");
viewer.clock.currentTime = Cesium.JulianDate.fromIso8601("2017-07-11T16:00:00Z");
viewer.clock.multiplier = 2; // 设置加速倍率
viewer.clock.clockStep = Cesium.ClockStep.SYSTEM_CLOCK_MULTIPLIER; // tick computation mode(还没理解具体含义)
viewer.clock.clockRange = Cesium.ClockRange.LOOP_STOP; // 循环播放
viewer.timeline.zoomTo(viewer.clock.startTime, viewer.clock.stopTime); // 设置时间的可见范围
上述代码设定了场景动画播放速率,开始和结束时间,并且设置为循环播放。并且设置了时间线控件在合适的时间范围。使用这个 示例 去试验更多时间设置
初始化配置完成了,当你运行代码,能看到如下效果

初始化程序
Entities加载和样式配置
上面我们程序里已经添加了viewer 、影像图层、地形图层。下来重点说项目里的示例点位数据(the sample geocache data)。
为了更方便的可视化,Cesium支持流行的矢量格式GeoJson和KML,同时也支持我们团队定义的一种格式 CZML.
无论最初是什么格式,所有的空间矢量数据在Cesium里都是使用Entity 相关API去展示的。Entity API 使用了灵活高效的可视化渲染方式。 Entity是一种对几何图形做空间和时间展示的数据对象。sandcastle 里提供了很多简单的entity。
为了能快速的学习Entity API,建议先花点时间去读下 空间数据可视化教程 。
下面一些使用Entity API的示例:


Polygon
Polyline
Billboard
Label


一旦你已经理解了Entity是什么东西,使用Cesium加载数据就很容易理解了。为了读取数据文件,需要根据你的数据格式创建一个合适的 DataSource ,它将负责解析你配置的url里的数据,然后创建一个[EntityCollection]用来存储从数据里加载的每一个Entity 。DataSource 只是定义一些接口,依据数据格式的不同会有不同的解析过程。比如,KML使用KmlDataSource。如下面代码:
var kmlOptions = {
camera : viewer.scene.camera,
canvas : viewer.scene.canvas,
clampToGround : true
};
// 从这个KML的url里加载POI点位  : //catalog.opendata.city/dataset/pediacities-nyc-neighborhoods/resource/91778048-3c58-449c-a3f9-365ed203e914
var geocachePromise = Cesium.KmlDataSource.load('./Source/SampleData/sampleGeocacheLocations.kml', kmlOptions);


这段代码使用 KmlDataSource.load(optinos) 来从KML文件中读取点位数据。 对于KmlDataSource,camera  和 canvas 选项必须要配置。clampToGround 选项控制数据是否贴地, 贴地效果是最常见的矢量数据可视化效果,保证数据紧贴地形起伏,而不是仅仅相对WGS84绝对球表面。
因为数据是异步加载的,所以这个函数实际返回一个 Promise , 最后使用KmlDataSource 存储我们新创建的Entity。
Promise 是一种异步处理机制,这里的“异步”是指需要在.then函数里操作数据,而不是直接在 .load函数之后立即操作。为了能在scene中使用这些载入的entity,只有当这个promise的then回调中才可以把KmlDataSource添加到 viewer.datasources。

这些新加入到场景的entity默认有很多功能。单击它们会在 Infobox 显示属性, 双击它相机转换为居中观察模式(look at). 使用HOME按钮或者infobox旁边的相机按钮可以停止这种模式。下来我们来自定义样式。
KML和CZML格式,在文件内有明确的样式定义。为了学习,我们手动去创建样式。数据载入之后,我们依据这个 示例 遍历所有entity修改或者增加属性。我们的POI点默认都是使用  Billboards 和 Labels 显示, 根据下面的代码来修改某些entity的显示样式:

通过调整锚点(anchor point)来改进显示效果,并且为了避免杂乱删除了文字标注(labels),最后设置了 displayDistanceCondition 控制只显示和相机一定距离内的点.
if (Cesium.defined(entity.billboard)) {
// 调整垂直方向的原点,保证图标里的针尖对着地表位置 
entity.billboard.verticalOrigin = Cesium.VerticalOrigin.BOTTOM;
// 去掉文字的显示
entity.label = undefined;
// 设置可见距离
entity.billboard.distanceDisplayCondition = new Cesium.DistanceDisplayCondition(10.0, 20000.0);
}
关于distanceDisplayCondition,可以学习下 sandcastle 示例.
下来,我们改进下 Infobox 。Infobox的标题栏显示的是entity的name属性, 它的内容显示的是description属性(使用HTML文本显示)。
你发现我们这个数据默认的description属性没什么意义,我们把这个属性更改为显示每个点的经纬度。
首先我们把entity的position属性转换为Cartographic,然后把经度和纬度构造一个HTML的table并赋值到description属性里。 现在单击我们的点在 Infobox 会显示一个格式规整的信息。
if (Cesium.defined(entity.billboard)) {


        entity.billboard.verticalOrigin = Cesium.VerticalOrigin.BOTTOM;
        entity.label = undefined;
        entity.billboard.distanceDisplayCondition = new Cesium.DistanceDisplayCondition(10.0, 20000.0);
        // 计算经度和纬度(角度表示)
        var cartographicPosition = Cesium.Cartographic.fromCartesian(entity.position.getValue(Cesium.JulianDate.now()));
        var longitude = Cesium.Math.toDegrees(cartographicPosition.longitude);
        var latitude = Cesium.Math.toDegrees(cartographicPosition.latitude);
        // 修改描述信息 
        var description = '<table class="cesium-infoBox-defaultTable cesium-infoBox-defaultTable-lighter"><tbody>' +
            '<tr><th>' + "经度" + '</th><td>' + longitude.toFixed(5) + '</td></tr>' +
            '<tr><th>' + "纬度" + '</th><td>' + latitude.toFixed(5) + '</td></tr>' +
            '</tbody></table>';
        entity.description = description;
    }


最后效果:

修改description属性或许把每个POI点所在的行政区展示出来非常有用。我们试着通过一个GeoJson文件来创建NYC的所有行政区域多边形。加载GeoJson和上面加载KML基本没什么区别,只是使用 GeoJsonDataSource 。和前面一样,也必须在promise的then函数里把数据添加到viewer.datasources 中,数据才能显示。
var geojsonOptions = {
clampToGround : true
};
// 从geojson文件加载行政区多边形边界数据
var neighborhoodsPromise = Cesium.GeoJsonDataSource.load('./Source/SampleData/neighborhoods.geojson', geojsonOptions);


var neighborhoods;
neighborhoodsPromise.then(function(dataSource) {
viewer.dataSources.add(dataSource);
});
下来设置多边形数据的样式。和上面调整billboard样式一样,我们设置行政区域多边形也必须在数据完全载入后去做。

首先,我们重新设置每个entity的name属性和行政区的名称相同。原始的GeoJson文件有一个neighborhood的属性。Cesium使用entity.properties来存储GeoJson的属性。所以我们这么设置:

为了避免所有多边形颜色都相同,可以使用一个随机颜色 Color去设置每个多边形的 ColorMaterialProperty属性。
// 设置一个随机半透明颜色
entity.polygon.material = Cesium.Color.fromRandom({
red : 0.1,
maximumGreen : 0.5,
minimumBlue : 0.5,
alpha : 0.6
});
// 设置这个属性让多边形贴地,ClassificationType.CESIUM_3D_TILE 是贴模型,ClassificationType.BOTH是贴模型和贴地
entity.polygon.classificationType = Cesium.ClassificationType.TERRAIN;


最后,我们再创建一个基本的文字标注 Label。 为了保证显示效果清晰,我们设置了一个 disableDepthTestDistance 确保这个标注不会被其他对象盖住。
可是,Label需要通过entity.position属性设置位置。但是Polygon 是有一个positions列表组成的边界,我们使用这个positions列表的中心点来计算。
// 获取多边形的positions列表 并计算它的中心点
var polyPositions = entity.polygon.hierarchy.getValue(Cesium.JulianDate.now()).positions;
var polyCenter = Cesium.BoundingSphere.fromPoints(polyPositions).center;
polyCenter = Cesium.Ellipsoid.WGS84.scaleToGeodeticSurface(polyCenter);
entity.position = polyCenter;
// 生成文字标注
entity.label = {
text : entity.name,
showBackground : true,
scale : 0.6,
horizontalOrigin : Cesium.HorizontalOrigin.CENTER,
verticalOrigin : Cesium.VerticalOrigin.BOTTOM,
distanceDisplayCondition : new Cesium.DistanceDisplayCondition(10.0, 8000.0),
disableDepthTestDistance : 100.0
};
最终效果:
多边形的文字标注
最后,增加一个无人机飞跃城市上空的高科技效果。
因为飞行路径只是一系列带着时间属性的位置点,我们通过CZML 文件来加载。CZML是一种在Cesium里描述时序图形场景的文件格式。它包含折线(lines)、点(points)、图标(billboards)、模型(models)和其他图形元素,以及他们随时间变化的属性。如同Google Earth的KML,CZML通过一种描述性语言(基于json格式)来存储Cesium大部分的功能。
我们得CZML文件定义一个包含不同时刻得一个位置列表Entity(默认显示为一个point)。在Entity API中有一些处理时间序列数据的属性类型。参考下面的示例:


Property Types 示例
// 从CZML中载入无人机轨迹
var dronePromise = Cesium.CzmlDsataSource.load('./Source/SampleData/SampleFlight.czml');


dronePromise.then(function(dataSource) {
viewer.dataSources.add(dataSource);
});
这个CZML中使用 Path去展示无人机轨迹, 以及一个展示不同时刻位置的属性.。使用插值算法把一个路径的离散点链接为一个连续的折线。
我们继续改进下无人机的显示样式。我们可以用一个三维模型去表示我们的无人机,并把它设置到entity上,而不是仅仅用一个简单的点。


三维模型示例
三维模型带颜色示例


Cesium支持加载glTF格式的三维模型格式。glTF是一个由Cesium团队和 Khronos group一起开发的开源三维模型格式,这种格式尽量减少传输和实时处理过程中的模型数据量。如果没有glTF模型,我们提供了一个  在线转换工具 把DAE,obj等格式转为glTF。
我们载入一个效果不错的,又带动画的无人机模型 Model :

现在我们的模型看起来还不错,不像最初那个简单的点效果,这个无人机模型有方向,但是效果有点奇怪,并没有朝向无人机的前进方向。幸好,Cesium提供了VelocityOrientationProperty ,这个会根据entity的位置点信息和时间来自动计算朝向。

现在我们的无人机模型朝向正确了。我们还可以改进下无人机飞行效果。Cesium依据离散点,使用线形插值构造了一条折线,虽然远处看不明显,但是这些折线段让路径看着不自然。有一些插值配置选项:


插值示例
为了飞行路径更平滑,可以如下修改配置 :

平滑的飞行路径
3D Tiles
我们的团队有时候描述Cesium像一个使用真实世界数据的三维游戏引擎。可是,加载真实世界的数据要比游戏引擎的数据困难很多,主要因为真实数据有非常高得分辨率,而且要求精确得可视化。幸好,Cesium和开源社区合作开发了3D Tiles格式。它是一个流式载入海量各种类型得空间三维数据的 开放协议 。
使用一种类似Cesium的地形和影像数据切片技术,3d tiles格式使原先那些不可能做可视化交互的大模型数据能够展示出来,包括建筑物数据、CAD(或者BIM)模型,点云,倾斜模型。


3D Tiles 调试器 ,它是一个能够查看各种3d tile后台信息的调试工具。


这是一些不同类型的3d tile模型数据:


倾斜模型
BIM数据
点云
所有类型


这个项目中,使用 Cesium3DTileset 类添加整个纽约的真实建筑物模型,改进了可视化效果的真实性。
// 加载纽约建筑物模型
var city = viewer.scene.primitives.add(new Cesium.Cesium3DTileset({ url: Cesium.IonResource.fromAssetId(3839) }));
你会发现这些建筑物的高度好像不正确。这个可以简单修正下。通过一个 modelMatrix,我们可以调整这个数据的位置。
把数据当前的包围球转为Cartographic,就能计算出模型现在相对于地面的偏移,然后增加这个偏移值,然后重设modelMatrix:
// 调整3dtile模型的高度,让他刚好放在地表
var heightOffset = -32;
city.readyPromise.then(function(tileset) {
// Position tileset
var boundingSphere = tileset.boundingSphere;
var cartographic = Cesium.Cartographic.fromCartesian(boundingSphere.center);
var surface = Cesium.Cartesian3.fromRadians(cartographic.longitude, cartographic.latitude, 0.0);
var offset = Cesium.Cartesian3.fromRadians(cartographic.longitude, cartographic.latitude, heightOffset);
var translation = Cesium.Cartesian3.subtract(offset, surface, new Cesium.Cartesian3());
tileset.modelMatrix = Cesium.Matrix4.fromTranslation(translation);
});
现在我们有了110万个建筑物模型。
3D Tiles 支持使用3D Tiles样式语言去对一部分数据进行样式配置。
3D Tiles的样式依据一个表达式,根据Cesium3DTileFeature模型属性去修改某一部分甚至某一栋建筑物的颜色(RGB和透明度)。这些元素属性(feature property)通常存储在每个模型切片的batchtable中。元素属性可以是任意属性,比如高度,名称,坐标,创建日期等等。样式语言使用JSON格式定义,并且支持JavaScript的表达式(a small subset of JavaScript augmented)。另外,样式语言提供了一些内置的函数,支持数学计算。
Cesium3DTileStyle示例如下:

这个样式只是简单的让纽约的所有建筑都可见。把它设置到 city.style就可以看到可视化效果。

默认效果
下面这个样式让模型半透明:

半透明效果
所有元素使用相同样式只是小儿科。我们可以使用属性对每个元素设置不同样式。下面是一个依据建筑高度去着色的示例:

依据高度着色
为了在这些样式之间切换,我们增加一点点代码去监听HTML的输入框变化:

如果想学习更多关于3D Tiles如何配置样式,请查看这个 示例。
一些其他3D Tiles的示例:


格式
倾斜模型


样式配置
如果你有各种三维数据需要转换为3D tiles,请下载我们的CesiumLab。


交互
最后,我们添加一些鼠标交互。我们改进下效果,当鼠标划过的时候,高亮图标。 为了做出这个效果,我们使用拾取技术(picking),它能够根据一个屏幕上的像素位置返回三维场景中的对象信息。
有好几种拾取:


Scene.pick : 返回窗口坐标对应的图元的第一个对象。


Scene.drillPick :返回窗口坐标对应的所有对象列表。


Globe.pick : 返回一条射线和地形的相交位置点。


这是一些示例:


拾取示例


3D Tiles 对象拾取
因为我们想实现鼠标滑过的高亮效果,首先需要创建一个鼠标事件处理器。  ScreenSpaceEventHandler是可以处理一系列的用户输入事件的处理器. ScreenSpaceEventHandler.setInputAction()`](/Cesium/Build/Documentation/ScreenSpaceEventHandler.html#setInputAction) 监听某类型的用户输入事件 -- [ScreenSpaceEventType用户输入事件类型,做为一个参数传递过去。这里我们设置一个回调函数来接受鼠标移动事件:
var handler = new Cesium.ScreenSpaceEventHandler(viewer.scene.canvas);
handler.setInputAction(function(movement) {}, Cesium.ScreenSpaceEventType.MOUSE_MOVE);
下来我们写高亮函数。我们可以在回调函数里获得一个窗口坐标,并传递到pick()方法里。 如果拾取到一个billboard对象,我们就知道目前鼠标在一个图标上了。然后使用我们前面学过的相关Entity接口,去修改它的样式做高亮效果。
// 当鼠标移到了我们关注的图标上,修改entity 的billboard 缩放和颜色
handler.setInputAction(function(movement) {
var pickedPrimitive = viewer.scene.pick(movement.endPosition);
var pickedEntity = (Cesium.defined(pickedPrimitive)) ? pickedPrimitive.id : undefined;
// Highlight the currently picked entity
if (Cesium.defined(pickedEntity) && Cesium.defined(pickedEntity.billboard)) {
pickedEntity.billboard.scale = 2.0;
pickedEntity.billboard.color = Cesium.Color.ORANGERED;
}
}, Cesium.ScreenSpaceEventType.MOUSE_MOVE);


高亮样式设置成功了。可是,当鼠标不在图标上,这个高亮样式依然有效。为了解决这个问题,我们使用一个变量来存储上次的高亮图标,当鼠标不在它上面的时候,恢复它原来的样式。
这是包含高亮和不高亮完整功能的代码:
var previousPickedEntity = undefined;
handler.setInputAction(function(movement) {
var pickedPrimitive = viewer.scene.pick(movement.endPosition);
var pickedEntity = (Cesium.defined(pickedPrimitive)) ? pickedPrimitive.id : undefined;
// 取消上一个高亮对象的高亮效果
if (Cesium.defined(previousPickedEntity)) {
previousPickedEntity.billboard.scale = 1.0;
previousPickedEntity.billboard.color = Cesium.Color.WHITE;
}
// 当前entity高亮
if (Cesium.defined(pickedEntity) && Cesium.defined(pickedEntity.billboard)) {
pickedEntity.billboard.scale = 2.0;
pickedEntity.billboard.color = Cesium.Color.ORANGERED;
previousPickedEntity = pickedEntity;
}
}, Cesium.ScreenSpaceEventType.MOUSE_MOVE);
好了,我们添加了完整的图标entity的鼠标交互响应。

鼠标交互
相机模式
为了炫耀我们的无人机飞行,我们来实验下相机模式。在两种相机模式下可以简单的切换:


自由模式 :默认的相机控制方式
无人机模式 : 以一个固定距离跟随无人机
自由模式下不需要任何代码。无人机跟随模式下,我们使用viewer内置的跟随函数,确保相机一直居中观察无人机。这种模式下,即便对象是移动的,相机也能和目标之间保持一个固定的偏移距离。只需要简单的设置
viewer.trackedEntity。
切换到自由模式,只需要把viewer.trackedEntity 设置为undefined,然后可以使用camera.flyTo()返回到初始位置。


这是相机模式代码:



只需要把这个函数绑定到HTML元素的change事件上。

当我们双击entity的时候,就会自动进行跟随模式。如果用户通过点击跟踪无人机,添加一些处理去自动更新UI界面:

本文由职坐标整理并发布,希望对同学们有所帮助。了解更多详情请关注编程语言JAVA频道!


本文由 @小标 发布于职坐标。未经许可,禁止转载。
喜欢 | 0 不喜欢 | 1
看完这篇文章有何感觉?已经有1人表态,0%的人喜欢 快给朋友分享吧~
评论(0)
后参与评论

您输入的评论内容中包含违禁敏感词

我知道了

助您圆梦职场 匹配合适岗位
验证码手机号,获得海同独家IT培训资料
选择就业方向:
人工智能物联网
大数据开发/分析
人工智能Python
Java全栈开发
WEB前端+H5

请输入正确的手机号码

请输入正确的验证码

获取验证码

您今天的短信下发次数太多了,明天再试试吧!

提交

我们会在第一时间安排职业规划师联系您!

您也可以联系我们的职业规划师咨询:

小职老师的微信号:z_zhizuobiao
小职老师的微信号:z_zhizuobiao

版权所有 职坐标-一站式IT培训就业服务领导者 沪ICP备13042190号-4
上海海同信息科技有限公司 Copyright ©2015 www.zhizuobiao.com,All Rights Reserved.
 沪公网安备 31011502005948号    

©2015 www.zhizuobiao.com All Rights Reserved

208小时内训课程